Troglitazone Attenuates TGF-β1-Induced EMT in Alveolar Epithelial Cells via a PPARγ-Independent Mechanism
نویسندگان
چکیده
Peroxisome proliferator activated receptor γ (PPARγ) agonists are effective antifibrotic agents in a number of tissues. Effects of these agents on epithelial-mesenchymal transition (EMT) of primary alveolar epithelial cells (AEC) and potential mechanisms underlying effects on EMT have not been well delineated. We examined effects of troglitazone, a synthetic PPARγ agonist, on transforming growth factor (TGF)-β1-induced EMT in primary rat AEC and an alveolar epithelial type II (AT2) cell line (RLE-6TN). TGF-β1 (2.5 ng/mL) induced EMT in both cell types, as evidenced by acquisition of spindle-like morphology, increased expression of the mesenchymal marker α-smooth muscle actin (α-SMA) and downregulation of the tight junctional protein zonula occludens-1 (ZO-1). Concurrent treatment with troglitazone (or rosiglitazone), ameliorated effects of TGF-β1. Furthermore, following stimulation with TGF-β1 for 6 days, troglitazone reversed EMT-related morphological changes and restored both epithelial and mesenchymal markers to control levels. Treatment with GW9662 (an irreversible PPARγ antagonist), or overexpression of a PPARγ dominant negative construct, failed to inhibit these effects of troglitazone in AEC. Troglitazone not only attenuated TGF-β1-induced phosphorylation of Akt and glycogen synthase kinase (GSK)-3β, but also inhibited nuclear translocation of β-catenin, phosphorylation of Smad2 and Smad3 and upregulation of the EMT-associated transcription factor SNAI1. These results demonstrate inhibitory actions of troglitazone on TGF-β1-induced EMT in AEC via a PPARγ-independent mechanism likely through inhibition of β-catenin-dependent signaling downstream of TGF-β1, supporting a role for interactions between TGF-β and Wnt/β-catenin signaling pathways in EMT.
منابع مشابه
Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells.
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists ameliorate renal fibrotic lesions in diabetic nephropathy. However, the effects of the agonists on the epithelial-mesenchymal transition (EMT) linked to membrane transport dysfunction are unknown. The present study aimed to verify the effects of the PPARγ agonist troglitazone on high glucose (HG)-induced EMT in primary cultured renal...
متن کاملCurcumin Inhibits Transforming Growth Factor-β1-Induced EMT via PPARγ Pathway, Not Smad Pathway in Renal Tubular Epithelial Cells
Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the mechanism remains elusive. We found t...
متن کاملSimvastatin attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells.
BACKGROUND Transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to idiopathic pulmonary fibrosis (IPF). TGF-β1-induced EMT in A549 cells (a human AEC cell line) resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim), a 3-hydr...
متن کاملBeneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats
Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...
متن کاملApolipoprotein A1 Inhibits TGF-β1–Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported t...
متن کامل